条件开放的探索性问题
题型预测
探索性问题的明显特征是问题本身具有开放性及问题解决的过程中带有较强的探索性.对于条件开放的探索性问题,往往采用分析法,从结论和部分已知的条件入手,执果索因,导出所需的条件.另外,需要注意的是,这一类问题所要求的往往是问题的充分条件,而不一定是充要条件,因此,直觉联想、较好的洞察力都将有助于这一类问题的解答.
范例选讲
例1.在四棱锥中,四条侧棱长都相等,底面是梯形,,.为保证顶点P在底面所在平面上的射影O在梯形的外部,那么梯形需满足条件___________________(填上你认为正确的一个条件即可).
讲解: 条件给我们以启示.由于四条侧棱长都相等,所以,顶点P在底面上的射影O到梯形四个顶点的距离相等.即梯形有外接圆,且外接圆的圆心就是O.显然梯形必须为等腰梯形.
再看结论.结论要求这个射影在梯形的外部,事实上,我们只需找出使这个结论成立的一个充分条件即可.
显然,点B、C应该在过A的直径AE的同侧.不难发现,应该为钝角三角形.
故当(且AC>BC)时可满足条件.其余等价的或类似的条件可以随读者想象.
例2.老师给出一个函数,四个学生甲、乙、丙、丁各指出这个函数的一个性质:
甲:对于,都有;
乙:在上函数递减;
丙:在上函数递增;
丁:不是函数的最小值.
如果其中恰有三个人说得正确,请写出一个这样的函数:____________.
讲解:首先看甲的话,所谓“对于,都有”,其含义即为:函数的图像关于直线对称.数形结合,不难发现:甲与丙的话相矛盾.(在对称轴的两侧,函数的单调性相反)
因此,我们只需选择满足甲、乙、丁(或乙、丙、丁)条件的函数即可.
如果我们希望找到满足甲、乙、丁条件的函数,则需要认识到:所谓函数在上单调递减,并不是说函数的单调递减区间只有.考虑到关于直线的对称性,我们不妨构造函数,使之在上单调递减,这样,既不与乙的话矛盾,也满足丁所说的性质.如即可.
如果希望找到满足乙、丙、丁条件的函数,则分段函数是必然的选择.如.
例3.对任意函数,,可按图示构造一个数列发生器,其工作原理如下:
①
输入数据,经数列发生器输出;
②
若,则数列发生器结束工作;若,则将反馈回输入端,再输出,并依此规律继续下去.
现定义.
(Ⅰ)若输入,则由数列发生器产生数列.请写出数列的所有项;
(Ⅱ)若要数列发生器产生一个无穷的常数数列,试求输入的初始数据的值;
(Ⅲ)若输入时,产生的无穷数列满足:对任意正整数n,均有,求的取值范围.
(Ⅳ)是否存在,当输入数据时,该数列发生器产生一个各项均为负数的的无穷数列.
讲解:(Ⅰ)对于函数,.
若,代入计算可得:,
故产生的数列只有三项.
(Ⅱ)要使数列发生器产生一个无穷的常数数列,实际上是对于任意的正整数,都应该有.又.所以,只需令.
解得:.
由于题目实际上只要求找到产生“无穷常数数列”的一个充分条件,所以,令(或2)即可.此时必有=1(或2).
事实上,相对于本题来讲,(或2)是产生“无穷常数数列”的充要条件(这是因为函数是一一对应).如果把函数换成,请读者思考:有多少个满足条件的初值?
(Ⅲ)要使得对任意正整数n,均有,我们不妨先探索上述结论成立的一个必要条件.即.
事实上,不等式的解为或.(*)
所以,或.
下面我们来研究这个条件是否充分.
当时,,所以,虽然有,但此时,显然不符合题意.
当时,由上可知:,且不难求得,以此类推,可知,必有:对任意正整数n,均有成立.
综上所述,.由及(*),不难得知:的取值范围为.
(Ⅳ)要求使得成立的初值.实质上是执果索因.令,则由不难解得.
又由,可解得:.
由此我们知道,如果,则必有.即与不可能同时小于0.
国内英语资讯:Xi meets leaders of Pacific island nations to further BRI cooperation
国内英语资讯:China, Russia agree to promote law enforcement, security cooperation
娱乐英语资讯:Chinese artists cello concerto to make U.S. premiere
国际英语资讯:Croatian govt accepts UN migration agreement
好莱坞将翻拍《武则天》!中国演员或将客串?
为什么爱总是被辜负?
体坛英语资讯:Serbia claim title in historic Volleyball World Championship, China finish 3rd
体坛英语资讯:Bulls to miss injured guard Dunn for 4-6 weeks
2018年是“有毒的”!《牛津词典》年度词汇出炉
国内英语资讯:Chinas Singles Day sales hit 1.4 bln USD in first 2 minutes
科学家发明眼球创可贴 能愈合眼部伤口的隐形眼镜
体坛英语资讯:2018 X-Mudder final to kick off in Yunnan
国际英语资讯:Feature: Young people give their voices at APEC
国内英语资讯:Spotlight: Arab countries, China join hands to boost cooperation in renewable energy
国内英语资讯:Spotlight: China, Singapore explore more potentials for BRI cooperation
Do Not Throw The Food 不要投食
体坛英语资讯:Mourinho: Stamford Bridge return is just another game
国内英语资讯:Chinese vice president meets Henry Kissinger
国内英语资讯:Top political advisory body to hold standing committee meeting on Nov. 28-29
国内英语资讯:China to double agricultural trade with Japan, ROK in 10 years: official
美国纪念退伍军人节
国外最新研究:没睡好是因为没喝够水!
体坛英语资讯:Okutoyi to spearhead Kenya at Africa Tennis Nations Cup finals in Botswana
体坛英语资讯:Arsenal boss Emery saying nothing over Ramsey future
你可能见过杠精,但你见过隐形杠精吗?
这10种食物会让你更快变老,你都吃吗?
国内英语资讯:China, Pacific island countries lift ties to comprehensive strategic partnership
国际英语资讯:NYCs legendary Christmas show goes high-tech in new season
The Great Wall 长城
BBC评出100部最佳外语电影,13部华语片入围,你看过几部?
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |