Since the start of the year, a team of researchers at Carnegie Mellon University supported by grants from the Defense Advanced Research Projects Agency and Google, and tapping into a research supercomputing cluster provided by Yahoo has been fine-tuning a computer system that is trying to master semantics by learning more like a human. Its beating hardware heart is a sleek, silver-gray computer calculating 24 hours a day, seven days a week that resides in a basement computer center at the university, in Pittsburgh. The computer was primed by the researchers with some basic knowledge in various categories and set loose on the Web with a mission to teach itself.
For all the advances in computer science, we still dont have a computer that can learn as humans do, cumulatively, over the long term, said the teams leader, Tom M. Mitchell, a computer scientist and chairman of the machine learning department.
The Never-Ending Language Learning system, or NELL, has made an impressive showing so far. NELL scans hundreds of millions of Web pages for text patterns that it uses to learn facts, 390,000 to date, with an estimated accuracy of 87 percent. These facts are grouped into semantic categories cities, companies, sports teams, actors, universities, plants and 274 others. The category facts are things like San Francisco is a city and sunflower is a plant.
NELL also learns facts that are relations between members of two categories. For example, Peyton Manning is a football player . The Indianapolis Colts is a football team . By scanning text patterns, NELL can infer with a high probability that Peyton Manning plays for the Indianapolis Colts even if it has never read that Mr. Manning plays for the Colts. Plays for is a relation, and there are 280 kinds of relations. The number of categories and relations has more than doubled since earlier this year, and will steadily expand.
The learned facts are continuously added to NELLs growing database, which the researchers call a knowledge base. A larger pool of facts, Dr. Mitchell says, will help refine NELLs learning algorithms so that it finds facts on the Web more accurately and more efficiently over time.
NELL is one project in a widening field of research and investment aimed at enabling computers to better understand the meaning of language. Many of these efforts tap the Web as a rich trove of text to assemble structured ontologies formal descriptions of concepts and relationships to help computers mimic human understanding. The ideal has been discussed for years, and more than a decade ago Sir Tim Berners-Lee, who invented the underlying software for the World Wide Web, sketched his vision of a semantic Web.
Today, ever-faster computers, an explosion of Web data and improved software techniques are opening the door to rapid progress. Scientists at universities, government labs, Google, Microsoft, I.B.M. and elsewhere are pursuing breakthroughs, along somewhat different paths.
For example, I.B.M.s question answering machine, Watson, shows remarkable semantic understanding in fields like history, literature and sports as it plays the quiz show Jeopardy! Google Squared, a research project at the Internet search giant, demonstrates ample grasp of semantic categories as it finds and presents information from around the Web on search topics like U.S. presidents and cheeses.
Still, artificial intelligence experts agree that the Carnegie Mellon approach is innovative. Many semantic learning systems, they note, are more passive learners, largely hand-crafted by human programmers, while NELL is highly automated. Whats exciting and significant about it is the continuous learning, as if NELL is exercising curiosity on its own, with little human help, said Oren Etzioni, a computer scientist at the University of Washington, who leads a project called TextRunner, which reads the Web to extract facts.
Computers that understand language, experts say, promise a big payoff someday. The potential applications range from smarter search to virtual personal assistants that can reply to questions in specific disciplines or activities like health, education, travel and shopping.
The technology is really maturing, and will increasingly be used to gain understanding, said Alfred Spector, vice president of research for Google. Were on the verge now in this semantic world.
With NELL, the researchers built a base of knowledge, seeding each kind of category or relation with 10 to 15 examples that are true. In the category for emotions, for example: Anger is an emotion. Bliss is an emotion. And about a dozen more.
2014高考英语一轮总复习 课时作业37 Unit2 Cloning 新人教版选修8
2014高考英语一轮总复习 写作训练5 新人教版
2014高考英语一轮总复习 课时作业5 Unit5 Nelson Mandela—a modern hero 新人教版必修1
2014高考英语一轮总复习 课时作业14 Unit4 Astronomy:the science of the stars 新人教版必修3
2014高考英语一轮总复习 课时作业18 Unit3 A taste of English humour 新人教版必修4
2014高考英语一轮总复习 课时作业25 Unit5 First aid 新人教版必修5
2014高考英语一轮总复习 课时作业23 Unit3 Life in the future 新人教版必修5
2014高考英语一轮总复习 课时作业21 Unit1 Great scientists 新人教版必修5
2014高考英语一轮总复习 课时作业19 Unit4 Body language 新人教版必修4
2014高考英语一轮总复习 课时作业12 Unit2 Healthy eating 新人教版必修3
2014高考英语一轮总复习 写作训练8 新人教版
2014高考英语一轮总复习 课时作业2 Unit2 English around the world 新人教版必修1
2014高考英语一轮总复习 课时作业7 Unit2 The Olympic Games 新人教版必修2
2014高考英语一轮总复习 课时作业26 Unit1 Art 新人教版选修6
2014高考英语一轮总复习 课时作业4 Unit4 Earthquakes 新人教版必修1
2014高考英语一轮总复习 课时作业3 Unit3 Travel journal 新人教版必修1
2014高考英语一轮总复习 课时作业16 Unit1 Women of achievement 新人教版必修3
2014高考英语一轮总复习 课时作业27 Unit2 Poems 新人教版选修6
2014高考英语一轮总复习 课时作业6 Unit1 Cultural relics 新人教版必修2
2014高考英语一轮总复习 写作训练1 新人教版
2014高考英语一轮总复习 课时作业9 Unit4 Wildlife protection 新人教版必修2
2014高考英语一轮总复习 课时作业15 Unit5 Canada“The True North” 新人教版必修3
2014高考英语一轮总复习 课时作业23 Unit3 Life in the future 新人教版必修5
2014高考英语一轮总复习 课时作业11 Unit1 Festivals around the world 新人教版必修3
2014高考英语一轮总复习 课时作业29 Unit4 Global warming 新人教版选修6
2014高考英语一轮总复习 课时作业35 Unit5 Travelling abroad 新人教版选修7
2014高考英语一轮总复习 课时作业32 Unit2 Robots 新人教版选修7
2014高考英语一轮总复习 写作训练2 新人教版
2014高考英语一轮总复习 课时作业36 Unit1 A land of diversity 新人教版选修8
2014高考英语一轮总复习 课时作业38 Unit3 Inventors and inventions 新人教版选修8
| 不限 |
| 英语教案 |
| 英语课件 |
| 英语试题 |
| 不限 |
| 不限 |
| 上册 |
| 下册 |
| 不限 |