雅思阅读:Bodes law lives!Bodes law lives!
SOMEWHERE, the spirit of Johann Elert Bode is smiling. Bode was a German astronomer who popularised a mathematical rule, which came to be known as Bodes law, in a book published in 1772. According to Bodes law, there is a hidden pattern in the spacing of the orbits of the planets. The orbits of Mercury, Venus, Earth, Mars, Jupiter and Saturn fit neatly into this pattern; Uranus, discovered in 1781, also obeyed the law. But there was a problem: Bodes law predicted that there ought to be a planet between Mars and Jupiter. It was only in 1801 with the discovery of Ceres, the largest of the asteroids, that this gap was neatly plugged.
In the two centuries since, however, Bodes law has fallen from grace. Ceres turned out to be just one of many asteroids orbiting between Mars and Jupiter, rather than a proper planet. Neptune, discovered in 1846, had a much smaller orbit than the law predicted; and Pluto, which is now classed as a dwarf planet, also failed to fit in with Bodes neat pattern when it was found in 1930. Bodes law, it seemed, was just a coincidence, an example of the human minds tendency to find a meaningful pattern where none exists.
But the discovery of a new planetary system by a group of astronomers at the European Southern Observatory, led by Christophe Lovis of the University of Geneva, has reawakened interest in the old rule. Indeed, their paper announcing the discovery refers to Bodes law by name . The system consists of at least five, and possibly as many as seven, planets orbiting a sun-like star called HD 10180, located 127 light-years away in the constellation of Hydrus. As the planets orbit the star, they pull it to and fro, causing telltale wobbles in the stars light that can be detected from Earth. Careful analysis of these wobbles reveals the masses of the planets and the sizes and spacing of their orbits.
And it turns out that the spacing of the orbits of the planets around HD 10180 obey a version of Bodes law. The planets look very different from those in the Earths solar system: five of them are about the size of Neptune, and are closer to their star than Mars is to the sun. The other two planets, for which the evidence is not quite so strong, are a Saturn-like planet orbiting further out, and a planet only slightly heavier than Earth orbiting very close to the star, so that it completes an orbit every 1.18 Earth days. But never mind that. The fit with Bodes law is striking, and the astronomers show in their paper that a few other known multiplanetary systems around other stars exhibit a similar fit too, though with fewer planets .
There is, in other words, starting to be enough evidence to suggest that Bodes law might not be a complete fluke. But why might planetary orbits obey such neat patterns, at least some of the time? The researchers speculate that it could be a side-effect of the mechanism by which planetary systems form. Dr Lovis and his colleagues suggest that when many planetary systems first emerge from a disk of dust and gas around a young star, they are saturated with planets. Most of the planets are then weeded out by collisions and ejections, caused by gravitational interaction between adjacent planetary bodies. Systems with regular planetary spacings then turn out to have the greatest long-term stability, so that they can be observed today. The researchers observe that the orbital distances of successive planets with similar masses will tend to obey an approximate exponential law, much like the century-long debated and polemical Titius-Bode law in the Solar System.
There are several caveats, of course. We emphasize that we do not consider these Titius-Bode-like laws as having any other meaning than a possible signature of formation processes, the astronomers insist. Such laws may only apply to relatively small planets relatively close to their suns. Systems dominated by very large super-Jupiter planets are probably far more chaotic, with gravitational tussles causing planets to end up in all sorts of strange orbits. And Dr Lovis and his colleagues note that the physics of planet formation is so diverse and complex that we do not expect any universal rule on planet ordering to exist.
Still, the idea that there might be something to Bodes law after all has been advanced by a few researchers in recent years as a serious theoretical possibility. As planet-finding technology improves, more planets are found around other stars and the number of known multiplanetary systems continues to increase, this modern-day revival of Bodes law can now be put to the test.
新GRE阅读考察的是什么
GRE阅读流程
解决GRE阅读长难句对策(6)
新GRE阅读方法:结构化阅读法
新GRE阅读文章应该这么读
哪些方法助你提高GRE阅读速度
GRE阅读目标
GRE阅读理解难句的典型结构
GRE阅读提分技巧
GRE阅读模板:考古学
GRE阅读三步骤
如何准备GRE阅读备考
如何掌控GRE阅读速度
GRE逻辑题解题思路解析
GRE阅读难句的典型结构
想得GRE阅读高分该怎么练习
解决GRE阅读长难句对策(7)
GRE阅读考试:难点答题技巧
GRE阅读:做题经验分享
解决GRE阅读长难句对策(5)
GRE阅读:如何快速找到主题
如何提高GRE阅读速度
GRE阅读正确步骤
GRE阅读备考常见困惑
新GRE阅读文章的选材
解决GRE阅读长难句对策(1)
提高GRE阅读速度技巧
GRE阅读解题六大原则
GRE阅读考点步骤
解决GRE阅读长难句对策(2)
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |