雅思阅读:Bodes law lives!Bodes law lives!
SOMEWHERE, the spirit of Johann Elert Bode is smiling. Bode was a German astronomer who popularised a mathematical rule, which came to be known as Bodes law, in a book published in 1772. According to Bodes law, there is a hidden pattern in the spacing of the orbits of the planets. The orbits of Mercury, Venus, Earth, Mars, Jupiter and Saturn fit neatly into this pattern; Uranus, discovered in 1781, also obeyed the law. But there was a problem: Bodes law predicted that there ought to be a planet between Mars and Jupiter. It was only in 1801 with the discovery of Ceres, the largest of the asteroids, that this gap was neatly plugged.
In the two centuries since, however, Bodes law has fallen from grace. Ceres turned out to be just one of many asteroids orbiting between Mars and Jupiter, rather than a proper planet. Neptune, discovered in 1846, had a much smaller orbit than the law predicted; and Pluto, which is now classed as a dwarf planet, also failed to fit in with Bodes neat pattern when it was found in 1930. Bodes law, it seemed, was just a coincidence, an example of the human minds tendency to find a meaningful pattern where none exists.
But the discovery of a new planetary system by a group of astronomers at the European Southern Observatory, led by Christophe Lovis of the University of Geneva, has reawakened interest in the old rule. Indeed, their paper announcing the discovery refers to Bodes law by name . The system consists of at least five, and possibly as many as seven, planets orbiting a sun-like star called HD 10180, located 127 light-years away in the constellation of Hydrus. As the planets orbit the star, they pull it to and fro, causing telltale wobbles in the stars light that can be detected from Earth. Careful analysis of these wobbles reveals the masses of the planets and the sizes and spacing of their orbits.
And it turns out that the spacing of the orbits of the planets around HD 10180 obey a version of Bodes law. The planets look very different from those in the Earths solar system: five of them are about the size of Neptune, and are closer to their star than Mars is to the sun. The other two planets, for which the evidence is not quite so strong, are a Saturn-like planet orbiting further out, and a planet only slightly heavier than Earth orbiting very close to the star, so that it completes an orbit every 1.18 Earth days. But never mind that. The fit with Bodes law is striking, and the astronomers show in their paper that a few other known multiplanetary systems around other stars exhibit a similar fit too, though with fewer planets .
There is, in other words, starting to be enough evidence to suggest that Bodes law might not be a complete fluke. But why might planetary orbits obey such neat patterns, at least some of the time? The researchers speculate that it could be a side-effect of the mechanism by which planetary systems form. Dr Lovis and his colleagues suggest that when many planetary systems first emerge from a disk of dust and gas around a young star, they are saturated with planets. Most of the planets are then weeded out by collisions and ejections, caused by gravitational interaction between adjacent planetary bodies. Systems with regular planetary spacings then turn out to have the greatest long-term stability, so that they can be observed today. The researchers observe that the orbital distances of successive planets with similar masses will tend to obey an approximate exponential law, much like the century-long debated and polemical Titius-Bode law in the Solar System.
There are several caveats, of course. We emphasize that we do not consider these Titius-Bode-like laws as having any other meaning than a possible signature of formation processes, the astronomers insist. Such laws may only apply to relatively small planets relatively close to their suns. Systems dominated by very large super-Jupiter planets are probably far more chaotic, with gravitational tussles causing planets to end up in all sorts of strange orbits. And Dr Lovis and his colleagues note that the physics of planet formation is so diverse and complex that we do not expect any universal rule on planet ordering to exist.
Still, the idea that there might be something to Bodes law after all has been advanced by a few researchers in recent years as a serious theoretical possibility. As planet-finding technology improves, more planets are found around other stars and the number of known multiplanetary systems continues to increase, this modern-day revival of Bodes law can now be put to the test.
2019英语七下Unit-8-Topic-2-单词词组情景交际答案()
2019萧中中七年级下英语阅读竞赛试题答案
湖北武汉陆家街中2019七上期中模拟题答案
山东惠民大年陈中七英语上期中模拟题答案
浙江衢州地区2019七下教学质量检测二
湖北武汉二桥中2019七上英语期中模拟题答案
2019牛津沪教版英语七上期末测试卷答案
2019七下英语Unit5 Topic3 Section B试卷答案
2019牛津沪教版英语七上期末测试卷
2019人教版七下unit 5核心考点集中练习题2答案 ()
山东滕州鲍沟中2019七下期末模拟试题二
湖北武汉育才2019七上英语期中模拟题答案
江苏盐城滨海滨海中2019春英语阅读考级题
黑龙江伊春第七中2019七英语期末模拟试题
浙江宁波地区2019七下教学质量检测二
江苏连云港西苑中七英语期末测试卷模B卷
深圳北环中2019七新生英语入学模拟题
黑龙江铁力第五中2019七上英语期末模拟测题
湖北武汉武珞路中2019七上期中模拟题
黑龙江大庆第19中2019七上期末英语模拟题答案
江苏连云港西苑中七英语上期末模拟a
江苏连云港西苑中七英语上期末模拟a答案
2019英语七下Unit-8-Topic-2-单词词组情景交际()
2019七下英语Unit5 Topic3 Section D检测卷答案
湖北武汉将军路中2019七上期中模拟试题
江苏泰兴新街中初一英语周周清6试卷
2019英语七下Module 12 Unit 1 同步练习题答案
黑龙江铁力桃山林业局子弟中2019英语期末模拟题
山西太原尖草坪西焉乡中2019下七英语Units9~10题
浙江宁波地区2019七下教学质量检测二答案
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |