Rogue theory of smell gets a boost 1. A controversial theory of how we smell, which claims that our fine sense of odour depends on quantum mechanics, has been given the thumbs up by a team of physicists. 2. Calculations by researchers at University College London (UCL) show that the idea that we smell odour molecules by sensing their molecular vibrations makes sense in terms of the physics involved. 3. Thats still some way from proving that the theory, proposed in the mid-1990s by biophysicist Luca Turin, is correct. But it should make other scientists take the idea more seriously. 4. This is a big step forward, says Turin, who has now set up his own perfume company Flexitral in Virginia. He says that since he published his theory, it has been ignored rather than criticized. 5. Most scientists have assumed that our sense of smell depends on receptors in the nose detecting the shape of incoming molecules, which triggers a signal to the brain. This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes. 6. But Turin argued that smell doesnt seem to fit this picture very well. Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs. And molecules with very different structures can smell similar. Most strikingly, some molecules can smell different to animals, if not necessarily to humans simply because they contain different isotopes (atoms that are chemically identical but have a different mass)。 7. Turins explanation for these smelly facts invokes the idea that the smell signal in olfactory receptor proteins is triggered not by an odour molecules shape, but by its vibrations, which can enourage an electron to jump between two parts of the receptor in a quantum-mechanical process called tunnelling. This electron movement could initiate the smell signal being sent to the brain. 8. This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier. Turins mechanism, says Marshall Stoneham of the UCL team, is more like swipe-card identification than a key fitting a lock. 9. Vibration-assisted electron tunnelling can undoubtedly occur it is used in an experimental technique for measuring molecular vibrations. The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield. 10. Stoneham says that when he first heard about Turins idea, while Turin was himself based at UCL, I didnt believe it。 But, he adds, because it was an interesting idea, I thought I should prove it couldnt work. I did some simple calculations, and only then began to feel Luca could be right. Now Stoneham and his co-workers have done the job more thoroughly, in a paper soon to be published in Physical Review Letters. 11. The UCL team calculated the rates of electron hopping in a nose receptor that has an odorant molecule bound to it. This rate depends on various properties of the biomolecular system that are not known, but the researchers could estimate these parameters based on typical values for molecules of this sort. 12. The key issue is whether the hopping rate with the odorant in place is significantly greater than that without it. The calculations show that it is which means that odour identification in this way seems theoretically possible. 13. But Horsfield stresses that thats different from a proof of Turins idea. So far things look plausible, but we need proper experimental verification. Were beginning to think about what experiments could be performed. 14. Meanwhile, Turin is pressing ahead with his hypothesis. At Flexitral we have been designing odorants exclusively on the basis of their computed vibrations, he says. Our success rate at odorant discovery is two orders of magnitude better than the competition. At the very least, he is putting his money where his nose is. (668 words Nature) Questions 1-4 Do the following statements agree with the information given in the passage? Please write TRUE if the statement agrees with the writer FALSE if the statement does not agree with the writer NOT GIVEN if there is no information about this in the passage 1. The result of the study at UCL agrees with Turins theory. 2. The study at UCL could conclusively prove what Luca Turin has hypothesized. 3. Turin left his post at UCL and started his own business because his theory was ignored. 4. The molecules of alcohols and those of thiols look alike. Questions 5-9 Complete the sentences below with words from the passage. Use NO MORE THAN THREE WORDS for each answer.
5. The hypothesis that we smell by sensing the molecular vibration was made by ______. 6. Turins company is based in ______. 7. Most scientists believed that our nose works in the same way as our ______. 8. Different isotopes can smell different when ______ weigh differently. 9. According to Audrew Horsfield, it is still to be proved that ______ could really occur in human nose. Question 10-12 Answer the questions below using NO MORE THAN THREE WORDS from the passage for each answer. 10. Whats the name of the researcher who collaborated with Stoneham? 11. What is the next step of the UCL teams study? 12. What is the theoretical basis in designing odorants in Turins company? Answer Keys and Explanations 1. T 见第一段。give sth the thumbs up为接受的意思。 2. F 见第三段。 Thats still some way from proving that the theory, proposed in the mid- 1990s by biophysicist Luca Turin, is correct.意即现在尚无法证实生物物理学家Luca在九十年代中期提出的理论是否正确。 3. NG 4. T 见第六段 Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs.identical 一词是完全相同的意思。这句话是说alcohols和thiols的分子结构看起来一样,但是它们的味道却相去甚远。 5. Luca Turin 文章第二,三和七段均可看出Luca的理论即人类的鼻子是通过感觉气味分子的震动来分辨气味的。 6. Virginia 见第四段。 7. tongue 见第五段 This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes. 8. the atoms 见第八段 This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier. 9. vibration-assisted electron tunneling 见第九段 The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield. 句中的代词this指句首的vibration-assisted electron tunneling。 10. Andrew Horsfield 见第九段结尾。 11.proper experimental verification 见第十三段。 12.their computed vibrations 见第十四段
雅思听力的七类常见关键词
雅思听力高分需要克服的三个问题
雅思听力核心词汇整理-A
雅思听力提高需要避免的10个点
剑桥雅思听力总结:比较关系
雅思听力常见关系词总结
横向解析雅思听力考点
雅思听力核心词汇整理-B
雅思听力题型训练方法:结合套题
雅思听力的四个高分小贴士
雅思听力核心必备词汇60个
雅思听力考前应对策略
短期提高雅思听力:精听和泛听相结合
例解雅思听力单选题的答题技巧
雅思听力真题解题技巧:干扰项
雅思听力常用的4大技巧
雅思听力考试的三个注意事项
雅思听力速度提高技巧:关键信息点
雅思听力经典场景解析:租房
雅思口语话题范文:TV program
雅思听力词汇的备考方法介绍
雅思听力考试的6大题型
雅思听力高频词汇:教育
王超伟:雅思听力提分之源-场景
剑四真题例解雅思听力关系词的应用
雅思听力高分技巧分享(24条)
短期提高雅思听力:把握关键信息
实现雅思听力满分的四个步骤
提高雅思听力 需要突破语音部分
雅思听力常见场景解析:工作
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |