The Man on the Street and the Men on the Moon
Does walking on the moon make life better for people on earth? Considering all the problems of our own world, why should we be spending huge sums on trips to outer space? Such questions as these are often asked, especially by those whose tax money is paying for space exploration. The answers to these questions are many and varied.
Up to now, the practical benefits resulting from space research have included the development of new methods and skills, new processes, new services, new products, and even new companies created to make use of what has been learned through space travel. Also among the benefits are better education , more efficient management, higher quality of industrial products, and rapid economic growth. People all over the world are now served by improved weather predictions, better communication systems, and better understanding of the earth and its environment. Everyone will benefit as observations from space make it possible to measure the earths resources and to observe whether or not they are being used properly. Increasingly, the space program will help our world deal with the problems of the environment. It has already brought a new appreciation of the complex system of which man is only a part.
One of the first areas of daily life to feel the effects of space travel was education. Americans felt challenged by the news of Sputnik I in 1957. Immediately their government responded by providing greatly increased financial support for U. S. education. Emphasis was placed on teaching more science and leaching it better, from the elementary grades through post-graduate school. Because education emphasized science and engineering, thousands of scientists and engineers were produced. These specialists participated more widely in government and industry than ever before..
In discussing how space travel has contributed to life on earth, some writers also emphasize the management methods which were developed in the effort to land men on the moon. That complex operation required new methods for directing the combined endeavours of thousands and thousands of minds, some in
government, some in universities, some in private industryall working together for a common purpose. Of the set of management techniques that made the walk on the moon possible, one writer, Tom Alexander, has written in Fortune magazine: This is potentially the most powerful tool in mans history. . . The question now is whether such techniques can be refashioned and turned to other tasks as well.
Another result of the space travel has concerned the quality of industrial products. Early in the Space Age, some of the equipment used by astronauts failed to perform properly. Space program managers were convinced by these events that space travel would require greater assurance of quality and dependability than had previously been demanded in industry.
To deal with the problem of quality and dependability, those in charge of the space program emphasized the need for testing industrial products. Many companies that had to develop tests for the space program also manufactured products for use on earth, such as cars and planes. Since some parts are used both in space systems and in products for ordinary life, the emphasis on quality had spread through American industry. Many products are now more reliable than they might have been if men had not been sent to the moon.
In addition to improving the quality of existing products, the space program has been responsible for the development and improvement of new ones. The most important is the computer. To bring the endangered Apollo 13 home safely in 1970, a new flight plan had to be made taking account of an unbelievably complex combination of elements. The computer accomplished this task in seventy-two minutes, whereas a man or a woman working with pencil and paper would have taken more than a million years! If there had been no space program, it is doubtful that computers would now be so widely used in industry and government. More than 800, 000 people in the United States are now employed in jobs related to computers: it is a field in which some of the highest salaries are paid.
Thousands of other new products and processes are now found in industry as the result of space research. Among them are metal alloys, long-wearing paints, plastics, and new types of glue and other adhesives , as well as new industrial tools. The National Aeronautics and Space Administration has a special program called Technology Utilization to speed the transfer of new ideas from the space program to commerce and industry. The U. S. Department of Commerce makes reports on this information available to organizations abroad.
New products and techniques for medicine have developed from the need to measure astronauts response to space flights. Many of these products and techniques are useful to patients in hospitals. To take just one example, there is a unit as small as a cigarette package which can be strapped to a patients arm to report on blood pressure, temperature, breathing, and other important information. Such devices allow a single nurse to observe changes in the condition of as many as sixty-four patients in an intensive-care unit.
Besides contributing to education, industry, and medicine, the space program has benefited communication. As a matter of fact, space satellites have revolutionized world communication. By 1960, the demand for overseas telephone and telegraph message for the United States was growing even faster. Industry could see no way to lay undersea cable. Transoceanic television was considered impractical. Satellites have changed all this. From thousands of kilometres above our earth, a communications satellite receives a signal from one side of the world and relays it directly to the other.
The first experiments with communications satellites were conducted in the early 1960s. Today about half the worlds long-distance telephone, telegraph, and television traffic is relayed by satellite. Through international agreements, the cost of transoceanic communication has cut almost in half.
An example of other ways in which satellites can benefit mankind was provided in 1970 by an international congress on post-graduate medical instruction. The American participants were in Texas; participating Europeans were in Switzerland, Germany, and Austria. For three hours by satellite, 30,000 doctors saw and heard their colleagues across the sea.
英语语法:the + 最高级 + 比较范围
英语语法:比较级形容词或副词 + than
英语中可修饰比较级的词有哪些
英语语法:代词的指代问题
英语语法:both, either, neither, all, any, none的区别
英语语法:many,much的区别
不定式作补语的语法知识
助动词be的用法
英语语法:every , no, all, both, neither, nor的区别
助动词do 的用法
英语语法:零冠词的用法
多个形容词修饰名词的顺序
many,old 和 far的区别
英语语法:反身代词
英语语法:指示代词
形容词与副词的比较级
短语动词的用法
英语语法:人称代词的用法
英语语法:one/another/the other的区别
英语语法:副词及其基本用法
英语语法:物主代词
英语语法:冠词的位置
不定式作宾语的语法应用
非谓语动词的用法
英语语法:不定冠词的用法
助动词语法知识点
形容词及其用法
英语语法:代词比较辩异 one,that 和it
英语语法:anyone/any one;no one/none;every/each的区别
和more有关的词组语法讲解
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |