Deep-sea vents Ocean-floor migration
How surface winds blow deep-sea critters from vent to vent
EVER since their discovery in the 1970s, deep-sea ventschimney-like structures on the ocean floor that belch hot water and dissolved minerals into the surrounding oceanhave been one of the hottest topics in marine biology. The vents support populations of bacteria, giant worms, clams, shrimp and other creatures in the inky darkness, often several kilometres below the surface. Unlike virtually every other ecosystem on the planet, these deep-sea communities do not rely on the sun for their food. Instead of using photosynthesis, the bacteria at the bottom of the food chain harvest energy from chemicals supplied by the vents themselves.
The vents are both widely spaced and transient, which means their denizens live a precarious existence. Yet travel between vent systems is apparently possible, even across miles of desolate ocean floor. Creatures confined to islands rapidly head in a different genetic direction to mainland relatives; but researchers have found surprisingly little genetic variation between the populations of even quite widely spaced ocean-bottom vents. Last year one paper described how a vent system that had been wiped clean by a volcanic eruption was quickly recolonised by a variety of larval creatures, some of which seemed to have travelled from another vent more than 300km away. Exactly how has remained a mystery.
Now a group of scientists led by Lauren Mullineaux at Americas Woods Hole Oceanographic Institution has described in Science how such transfers could happenand, in the process, discovered something surprising about how surface weather influences the deep ocean, traditionally thought of as an isolated, closed world.
The group was monitoring vents more than 2km beneath the surface in the Pacific Ocean off the coast of Central America when it found that quantities of larva and certain chemicals being emitted both fell sharply during periods of unusually strong deep-sea currents. This is consistent with larva and effluent from the vents being swept away into the open ocean. As a colonisation strategy, dispersal by ocean current would be unreliablewith vent systems so scarce, most of the larva swept out to sea would presumably perishbut plenty of plants on land adopt a similar approach using the wind.
The research offers more than just an insight into the life cycle of subsea gribblies. The powerful deep currents were strongly correlated with the passage of wind-generated mesoscale eddies: swirls of water tens or even hundreds of kilometres across on the ocean surface. The idea that surface winds can influence deep-sea currents is surprising, and it suggests that the atmospheres influence may extend far deeper into the oceans than previously thought. The researchers found that the surface eddiesand presumably, the deep currents as welltended to form between autumn and spring, and were more common during El Nio years. Even in the frigid darkness of the deep ocean it seems there may be weather and seasons of a sort.
以上就是这篇关于deep-sea的小动物的雅思阅读材料,是一篇科普类的文章,难度并不是很大,除了一些专有名词和专业词汇之外。大家可以在自己的雅思阅读备考中多多阅读这类的文章,对于词汇的积累和文章阅读速度的提高都有好处。最后,雅思预祝大家在雅思考试中取得好成绩!
2015考研英语阅读城市里的种族隔离
2015考研英语阅读Claude Levi Strauss
2015考研英语阅读天文学斥资太空
2015考研英语阅读从 BBC 到 NYT
2015考研英语阅读智能手机的地应用
2015考研英语阅读疯狂中的理智
2015考研英语阅读公司透明度
2015考研英语阅读知识产权交易所
2015考研英语阅读清白先生
2015考研英语阅读数字广播有钱可赚吗
2015考研英语阅读伙计们请一起行动
2015考研英语阅读西班牙足球别样红
2015考研英语阅读埃利布罗德
2015考研英语阅读韩国音乐产业
2015考研英语阅读对冲基金的成功
2015考研英语阅读优衣库占据中国市场
2015考研英语阅读全球来袭夜店
2015考研英语阅读深海探索
2015考研英语阅读45岁也能生娃
2015考研英语阅读业务流程外包
2015考研英语阅读经营道德
2015考研英语阅读直率的前第一夫人
2015考研英语阅读灰色的幽影
2015考研英语阅读购物游戏
2015考研英语阅读夏普和鸿海
2015考研英语阅读纳粹统治下的巴黎
2015考研英语阅读书评作家和间谍
2015考研英语阅读天鹅之歌
2015考研英语阅读美国在衰落吗
2015考研英语阅读商业活动与网络安全
| 不限 |
| 英语教案 |
| 英语课件 |
| 英语试题 |
| 不限 |
| 不限 |
| 上册 |
| 下册 |
| 不限 |