Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data, such as from sensor data or databases. A learner can take advantage of examples to capture characteristics of interest of their unknown underlying probability distribution. Data can be seen as examples that illustrate relations between observed variables. A major focus of machine learning research is to automatically learn to recognize complex patterns and make intelligent decisions based on data; the difficulty lies in the fact that the set of all possible behaviors given all possible inputs is too large to be covered by the set of observed examples . Hence the learner must generalize from the given examples, so as to be able to produce a useful output in new cases. Artificial intelligence is a closely related field, as are probability theory and statistics, data mining, pattern recognition, adaptive control, computational neuroscience and theoretical computer science.
2015考研英语阅读跨国公司在中国
2015考研英语阅读辩论
2015考研英语阅读日本消费税
2015考研英语阅读资产质量审查
2015考研英语阅读股票研究经济学
2015考研英语阅读北极龙舌兰日落
2015考研英语阅读干细胞的应用
2015考研英语阅读墨西哥阶层划定
2015考研英语阅读海洋生态学
2015考研英语阅读儿童智力发展
2015考研英语阅读新兴市场的跨国公司
2015考研英语阅读HIV and AIDS
2015考研英语阅读测量质量效应
2015考研英语阅读看电视
2015考研英语阅读资金冻结指数
2015考研英语阅读蒙特梭利管理
2015考研英语阅读欢迎来到塑料星球
2015考研英语阅读社会性蜘蛛
2015考研英语阅读日本的企业家
2015考研英语阅读身心医学
2015考研英语阅读低成本雷达
2015考研英语阅读Verizon的大手笔
2015考研英语阅读商用飞机
2015考研英语阅读远古动物行为
2015考研英语阅读经济数据
2015考研英语阅读网售艺术品点亚马逊
2015考研英语阅读尼莫的新角色
2015考研英语阅读美国研发战略
2015考研英语阅读太阳能动力飞行
2015考研英语阅足球转会
| 不限 |
| 英语教案 |
| 英语课件 |
| 英语试题 |
| 不限 |
| 不限 |
| 上册 |
| 下册 |
| 不限 |