Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data, such as from sensor data or databases. A learner can take advantage of examples to capture characteristics of interest of their unknown underlying probability distribution. Data can be seen as examples that illustrate relations between observed variables. A major focus of machine learning research is to automatically learn to recognize complex patterns and make intelligent decisions based on data; the difficulty lies in the fact that the set of all possible behaviors given all possible inputs is too large to be covered by the set of observed examples . Hence the learner must generalize from the given examples, so as to be able to produce a useful output in new cases. Artificial intelligence is a closely related field, as are probability theory and statistics, data mining, pattern recognition, adaptive control, computational neuroscience and theoretical computer science.
GMAT写作题库新增话题介绍
详解the same as在GMAT写作中的用法
GMAT写作常用句型整理
GMAT写作养成自己风格很重要
GMAT写作黄金句总结
GMAT写作模板的使用经验分享
如何利用模板拿下GMAT写作满分
GMAT写作速度的提升方法
GMAT写作AWA的重要性
整理GMAT写作中容易出现的问题
GMAT备考OG写作攻略
GMAT写作满分范文分享:以身作则
GMAT写作满分范文分享:利益与责任
GMAT写作常见话题有哪些?
GMAT写作常见的错误句型整理
GMAT写作高分速成攻略
GMAT写作备考需要针对话题记忆模板吗?
在职考生的GMAT满分备考方法
GMAT作文各部分常用的句型模板整理
如何写好GMAT写作的全球化话题
GMAT写作速成法及模板分享
GMAT写作满分模板分享
GMAT写作要形成自己的写作套路
GMAT写作话题库整理
GMAT写作高分攻略
GMAT写作新增话题分析
盘点GMAT写作常用的几种写作结构
提高GMAT写作速度的五大秘籍
分享GMAT写作的完美技巧
GMAT写作中引号如何正确使用
| 不限 |
| 英语教案 |
| 英语课件 |
| 英语试题 |
| 不限 |
| 不限 |
| 上册 |
| 下册 |
| 不限 |