Since the start of the year, a team of researchers at Carnegie Mellon University supported by grants from the Defense Advanced Research Projects Agency and Google, and tapping into a research supercomputing cluster provided by Yahoo has been fine-tuning a computer system that is trying to master semantics by learning more like a human. Its beating hardware heart is a sleek, silver-gray computer calculating 24 hours a day, seven days a week that resides in a basement computer center at the university, in Pittsburgh. The computer was primed by the researchers with some basic knowledge in various categories and set loose on the Web with a mission to teach itself.
For all the advances in computer science, we still dont have a computer that can learn as humans do, cumulatively, over the long term, said the teams leader, Tom M. Mitchell, a computer scientist and chairman of the machine learning department.
The Never-Ending Language Learning system, or NELL, has made an impressive showing so far. NELL scans hundreds of millions of Web pages for text patterns that it uses to learn facts, 390,000 to date, with an estimated accuracy of 87 percent. These facts are grouped into semantic categories cities, companies, sports teams, actors, universities, plants and 274 others. The category facts are things like San Francisco is a city and sunflower is a plant.
NELL also learns facts that are relations between members of two categories. For example, Peyton Manning is a football player . The Indianapolis Colts is a football team . By scanning text patterns, NELL can infer with a high probability that Peyton Manning plays for the Indianapolis Colts even if it has never read that Mr. Manning plays for the Colts. Plays for is a relation, and there are 280 kinds of relations. The number of categories and relations has more than doubled since earlier this year, and will steadily expand.
The learned facts are continuously added to NELLs growing database, which the researchers call a knowledge base. A larger pool of facts, Dr. Mitchell says, will help refine NELLs learning algorithms so that it finds facts on the Web more accurately and more efficiently over time.
NELL is one project in a widening field of research and investment aimed at enabling computers to better understand the meaning of language. Many of these efforts tap the Web as a rich trove of text to assemble structured ontologies formal descriptions of concepts and relationships to help computers mimic human understanding. The ideal has been discussed for years, and more than a decade ago Sir Tim Berners-Lee, who invented the underlying software for the World Wide Web, sketched his vision of a semantic Web.
Today, ever-faster computers, an explosion of Web data and improved software techniques are opening the door to rapid progress. Scientists at universities, government labs, Google, Microsoft, I.B.M. and elsewhere are pursuing breakthroughs, along somewhat different paths.
For example, I.B.M.s question answering machine, Watson, shows remarkable semantic understanding in fields like history, literature and sports as it plays the quiz show Jeopardy! Google Squared, a research project at the Internet search giant, demonstrates ample grasp of semantic categories as it finds and presents information from around the Web on search topics like U.S. presidents and cheeses.
Still, artificial intelligence experts agree that the Carnegie Mellon approach is innovative. Many semantic learning systems, they note, are more passive learners, largely hand-crafted by human programmers, while NELL is highly automated. Whats exciting and significant about it is the continuous learning, as if NELL is exercising curiosity on its own, with little human help, said Oren Etzioni, a computer scientist at the University of Washington, who leads a project called TextRunner, which reads the Web to extract facts.
Computers that understand language, experts say, promise a big payoff someday. The potential applications range from smarter search to virtual personal assistants that can reply to questions in specific disciplines or activities like health, education, travel and shopping.
The technology is really maturing, and will increasingly be used to gain understanding, said Alfred Spector, vice president of research for Google. Were on the verge now in this semantic world.
With NELL, the researchers built a base of knowledge, seeding each kind of category or relation with 10 to 15 examples that are true. In the category for emotions, for example: Anger is an emotion. Bliss is an emotion. And about a dozen more.
雅思口语素材:英文面试经典长句大汇总
雅思口语语料:The Oriental Pearl TV Tower
让你口语词汇加分的动词短语
口语学习两大误区:盲目跟读课文与录音
雅思口语的资料到底该怎么用?
剑8透露出的口语出题动向
名师教你备战雅思口语考试:情商是关键
雅思口语分类词汇:味道及餐厅
盘点雅思口语四大窍门巧答考官提问
雅思考试口语真题网友版
雅思口语需与时俱进注重“人性化”
备考雅思口语考试盲目背诵不可取
找对方向,走出雅思口语误区之词汇量
雅思名师讲解:口语卡片之名人明星篇
雅思口语备考方法:修辞的运用
雅思口语:考生在雅思口语中的常见错
雅思口语“潜规则”
雅思口语话题解析:A Childhood Toy
备考指导:雅思口语考试三大变化
雅思口语资料:The Oriental Pearl TV Tower
雅思口语练习:看英文电影提高发音水平
雅思口语训练方法总结
雅思口语高频话题答题方法:老人与年轻人
电话英语教你雅思口语巧用词汇
雅思口语万能模板准备
应对雅思口语考试中的难题:巧妙转移话题
雅思口语怎样把抽象化为具体
解读雅思口语话题之Place话题
雅思口试解疑:没有想象的难
雅思口语夺分途径:常用短句也能得高分!
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |