想要迅速提高GMAT数学的考试成绩,考生需要在熟练掌握GMAT数学备考要点的基础上,掌握一些实用的解题技巧,以提高GMAT数学的备考效率。下面就来为大家简单介绍一下GMAT数学考试中的常见考点及解题技巧,希望能够为考生备考GMAT数学带来帮助。
一、知识要点:
1.一元二次方程ax2+bx+c=0的根的判别式=b2-4ac。
定理1 ax^2+bx+c=0中,0方程有两个不等实数根
定理2 ax^2+bx+c=0中,=0方程有两个相等实数根
定理3 ax^2+bx+c=0中,0方程没有实数根
2、根的判别式逆用得到三个定理。
定理4 ax^2+bx+c=0中,方程有两个不等实数根0
定理5 ax^2+bx+c=0中,方程有两个相等实数根=0
定理6 ax^2+bx+c=0中,方程没有实数根0
注意:再次强调:根的判别式是指=b2-4ac。使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。如果说方程有实数根,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac0切勿丢掉等号。根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a0
二.根的判别式有以下应用:
不解一元二次方程,判断根的情况。
例1. 不解方程,判断下列方程的根的情况:
ax^2+bx=0
解:
∵a0, 方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零,
∵=2-4a
∵无论b取任何关数,b2均为非负数,
0, 故方程有两个实数根。
根据方程根的情况,确定待定系数的取值范围。
例2.k的何值时?关于x的一元二次方程x2-4x+k-5=0有两个不相等的实数根;有两个相等的实数根;没有实数根;
分析:由判别式定理的逆定理可知0;0;
解:=2-4
∵方程有两个不相等的实数根,
0,即36-4k0.解得k
∵方程有两个不相等的实数根,
=0,即36-4k=0.解得
∵方程有两个不相等的实数根,
0,即36-4k0.解得
证明字母系数方程有实数根或无实数根。
例3.求证方程x2-2mx+=0没有实数根。
分析:先求出关于x的方程的根的判别式,然后只需说明判别式是一个负数,就证明了该方程没有实数根。 分页标题#e#
证明: =-42
∵不论m取任何实数
-420, 即
关于x的方程x2-2mx+=0没有实数根。
小结:由上面的证明认清证明的格式归纳出证明的步骤:
计算
用配方法将恒等变形
判断的符号
结论.其中难点是的恒等变形,一般情况下配方后变形后为形如:a2,a2+2,2, -a2, -2的代数式,从而判定正负,非负等情况。
应用根的判别式判断三角形的形状。
例4.已知:a、b、c为ABC的三边,当m0时,关于x的方程c+b-2ax=0有两个相等的实数根。求证ABC为Rt。
判断当字母的值为何值时,二次三项是完全平方式
例5、若关于a的二次三项式16a2+ka+25是一个完全平方式则k的值可能是
若关于a的二次三项式ka2+4a+1是一个完全平方式则k的值可能是
分析:可以令二次三项等于0,若二次三项是完全平方式,则方程有两个相等的实数根。即
解:
∵方程有两个相等的实数根,
=k2-416
k=+40或者
∵方程有两个相等的实数根,=16-4k=0
可以判断抛物线与直线有无公共点
例6:当m取什么值时,抛物线与直线y=x+2m只有一个公共点?
解:列方程组消去y并整理得
,∵抛物线与直线只有一个交点,
=0,即 4m+5=0
说明:直线与抛物线的交点问题也可归纳为方程组的解的问题。
可以判断抛物线与x轴有几个交点
分析:抛物线y=ax2+bx+c与x轴的交点 当y=0时,即有ax2+bx+c=0,要求x的值,需解一元二次方程ax2+bx+c=0。可见,抛物线y=ax2+bx+c与x轴的交点的个数是由对应的一元二次方程ax2+bx+c=0的根的情况确定的,而决定一元二次方程ax2+bx+c=0的根的情况的,是它的判别式的符号,因此抛物线与x轴的交点有如下三种情形:
当时,抛物线与x轴有两个交点,若此时一元二次方程ax2+bx+c=0的两根为x1、x2,则抛物线与x轴的两个交点坐标为。
当时,抛物线与x轴有唯一交点,此时的交点就是抛物线的顶点,其坐标是。
当 时,抛物线与x轴没有交点。
例7、判定下列抛物线与x轴交点的个数:
解:=16-12=40 抛物线与x轴有两个交点。
=36-36=0 抛物线与x轴只有一个公共点。 分页标题#e#
=4-16=-120 抛物线与x轴无公共点。
例8、已知抛物线
当m取什么值时,抛物线和x轴有两个公共点?
当m取什么值时,抛物线和x轴只有一个公共点?并求出这个公共点的坐标。
当m取什么值时,抛物线和x轴没有公共点?
解:令y=0,则 =
∵抛物线与x轴有两个公共点, 0,即 4m+80
∵抛物线和x轴只有一个公共点, =0,即 4m+8=0
当m=2时,方程可化为,解得x1=x2= -1,抛物线与x轴公共点坐标为。
∵抛物线与x轴没有公共点, 0,即 -4m+80,
当m2时,抛物线与x轴没有公共点。
利用根的判别式解有关抛物线与x轴两交点间的距离的问题
分析:抛物线 与x轴两交点间的距离,是对应的一元二次方程 的两根差的绝对值。它有以下表示方法:
例9: 求当a为何值时?二次函数 图象与x轴的两个交点间的距离是3。
上海牛津版一年级英语下册Unit2 Small animals教案
苏教版牛津小学一年级英语教案Unit1 What`s your name
一年级英语上册教案 Unit 1 第二课时
沪教牛津版小学英语一年级上册 Unit 3 第二课时教案
上海版牛津一年级英语教案 Unit 3 My abilities
牛津版一年级英语上册Unit 2 Good morning 教案
上海牛津版一年级英语下册Unit3 Colours教案(1)
苏教版小学一年级英语下册Unit5 On the road教案
沪教版小学英语一年级下册教案unit1课时1
一年级英语下册Unit2 Small animals教案2
一年级英语上册Unit1 My classroom第三课时教案
上海牛津版一年级英语Unit3 This is my mum教案
一年级英语下册Unit2 Small animals第三课时教案
沪教版小学英语一年级下册教案unit1课时3
牛津小学一年级英语Unit5 Fruit教案(五个课时)
沪教牛津版小学英语一年级上册 Unit3 period1教案
新课标小学英语第一册期末考试百词范围
牛津版小学一年级英语上册Unit1 Hello教案
牛津版一年级英语上册unit5 Fruit教案(3)
沪教牛津版小学英语一年级上册 Unit 8 教案
上海牛津版一年级英语下册Unit9 Revision第二课时教案
沪教版小学英语一年级下册教案unit1课时6
一年级英语上册教案 Unit 1 Period 1
沪教牛津版一年级英语上册教案Unit1 My classroom第二课时
一年级英语上册教案Unit1 My classroom第一课时
外研版一年级英语上册教案Unit1 Hello
上海版牛津一年级英语教案Unit8 Playtime(总五课时)
小学一年级英语下册Unit2 Small animals教案1
上海牛津版一年级英语下册Unit9 Revision第一课时教案
上海牛津版一年级英语Unit7 My family教案
| 不限 |
| 英语教案 |
| 英语课件 |
| 英语试题 |
| 不限 |
| 不限 |
| 上册 |
| 下册 |
| 不限 |