抽象函数型综合问题
题型预测
抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识.可以说,这一类问题,是考查学生能力的较好途径,因此,在近年的高考中,这一类题目有增多和分量加重的趋势.
范例选讲
例1.定义在R上的函数满足:对任意实数,总有,且当时,.
(1)试求的值;
(2)判断的单调性并证明你的结论;
(3)设,若,试确定的取值范围.
(4)试举出一个满足条件的函数.
讲解:(1)在中,令.得:
.
因为,所以,.
(2)要判断的单调性,可任取,且设.
在已知条件中,若取,则已知条件可化为:.
由于,所以.
为比较的大小,只需考虑的正负即可.
在中,令,,则得.
∵ 时,,
∴ 当时,.
又,所以,综上,可知,对于任意,均有.
∴ .
∴ 函数在R上单调递减.
(3)首先利用的单调性,将有关函数值的不等式转化为不含的式子.
,
,即.
由,所以,直线与圆面无公共点.所以,
例2.已知定义在R上的函数满足:
(1)值域为,且当时,;
(2)对于定义域内任意的实数,均满足:
试回答下列问题:
(Ⅰ)试求的值;
(Ⅱ)判断并证明函数的单调性;
(Ⅲ)若函数存在反函数,求证:.
讲解:(Ⅰ)在中,令,则有.即:.
也即:.
由于函数的值域为,所以,,所以.
(Ⅱ)函数的单调性必然涉及到,于是,由已知,我们可以联想到:是否有
?(*)
这个问题实际上是:是否成立?
为此,我们首先考虑函数的奇偶性,也即的关系.由于,所以,在中,令,得.
所以,函数为奇函数.故(*)式成立.
所以,.
任取,且,则,故且.所以,
所以,函数在R上单调递减.
(Ⅲ)由于函数在R上单调递减,所以,函数必存在反函数,由原函数与反函数的关系可知:也为奇函数;在上单调递减;且当时,.
为了证明本题,需要考虑的关系式.
在(*)式的两端,同时用作用,得:,
令,则,则上式可改写为:
.
不难验证:对于任意的,上式都成立.(根据一一对应).
这样,我们就得到了的关系式.这个式子给我们以提示:即可以将写成的形式,则可通过裂项相消的方法化简求证式的左端.
事实上,由于
2014考研英语作文话题热点的预测
2014年考研英语新概念必背作文精选难忘的一天
2014年考研英语新概念必背作文精选作家之所需
名师指导2014考研英语大作文三段写作方略二
2014考研英语写作素材的常用谚语100句
2014考研英语写作最后一个星期提分篇汇总提纲式表作文
2014考研英语大作文三段写作的方略一
2014年考研英语新概念必背作文精选幸运的发现
2014考研英语押题17句搞定英语二作文(一)
2014年考研英语新概念必背作文精选全保险
2014年考研英语新概念必背作文贵族歹徒
2014年考研英语作文佳句300例精编1-25例
2014年考研英语新概念必背作文精选家丑
2014考研英语作文万能模板应对紧张
2014考研英语阅读理解试题及名师解析(1)
2014年考研英语作文佳句300例精编251-275例
2014考研英语作文4点预测
历年考研英语书信作文题目以及点拨
2014年考研英语新概念必背作文精选不要伤害蜘蛛
2014年考研英语新概念必背作文精选没东西卖也没东西买
2014年考研英语作文佳句300例精编126-150例
2014年考研英语新概念必背作文精选大逃亡
2014考研英语最后15天冲刺牢记作文经典句型及四大模板
2014年考研英语新概念必背作文精选新年的决心
2014考研英语写作最后一个星期提分篇汇总提纲式议论文2
2014年考研英语作文佳句300例精编151-175例
2014年考研英语新概念必背作文精选知识和进步
2014年考研英语新概念必背作文现代洞穴人
2014年考研英语作文佳句300例精编226-250例
2014考研英语写作最后一个星期提分篇汇总提纲式应用文2
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |