抽象函数型综合问题
题型预测
抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识.可以说,这一类问题,是考查学生能力的较好途径,因此,在近年的高考中,这一类题目有增多和分量加重的趋势.
范例选讲
例1.定义在R上的函数满足:对任意实数,总有,且当时,.
(1)试求的值;
(2)判断的单调性并证明你的结论;
(3)设,若,试确定的取值范围.
(4)试举出一个满足条件的函数.
讲解:(1)在中,令.得:
.
因为,所以,.
(2)要判断的单调性,可任取,且设.
在已知条件中,若取,则已知条件可化为:.
由于,所以.
为比较的大小,只需考虑的正负即可.
在中,令,,则得.
∵ 时,,
∴ 当时,.
又,所以,综上,可知,对于任意,均有.
∴ .
∴ 函数在R上单调递减.
(3)首先利用的单调性,将有关函数值的不等式转化为不含的式子.
,
,即.
由,所以,直线与圆面无公共点.所以,
例2.已知定义在R上的函数满足:
(1)值域为,且当时,;
(2)对于定义域内任意的实数,均满足:
试回答下列问题:
(Ⅰ)试求的值;
(Ⅱ)判断并证明函数的单调性;
(Ⅲ)若函数存在反函数,求证:.
讲解:(Ⅰ)在中,令,则有.即:.
也即:.
由于函数的值域为,所以,,所以.
(Ⅱ)函数的单调性必然涉及到,于是,由已知,我们可以联想到:是否有
?(*)
这个问题实际上是:是否成立?
为此,我们首先考虑函数的奇偶性,也即的关系.由于,所以,在中,令,得.
所以,函数为奇函数.故(*)式成立.
所以,.
任取,且,则,故且.所以,
所以,函数在R上单调递减.
(Ⅲ)由于函数在R上单调递减,所以,函数必存在反函数,由原函数与反函数的关系可知:也为奇函数;在上单调递减;且当时,.
为了证明本题,需要考虑的关系式.
在(*)式的两端,同时用作用,得:,
令,则,则上式可改写为:
.
不难验证:对于任意的,上式都成立.(根据一一对应).
这样,我们就得到了的关系式.这个式子给我们以提示:即可以将写成的形式,则可通过裂项相消的方法化简求证式的左端.
事实上,由于
2015年备考经验:如何找出文章中心思想
2014年职称英语考试基础篇精读荟萃(10)
友经验谈:考好职称英语是如何准备的
2014年全国职称英语考试句型宝典(5)
2014年职称英语考试特典:常见短语汇编(2)
2015年职称英语词汇记忆技巧及经验:构词法记忆法
2015年职称英语词汇选项做题小技巧
2014年职称英语考试基础篇精读荟萃(7)
2015职称英语快乐备考:单词打基础
2015年职称英语卫生类考试单词趣味记忆三
2014年职称英语考试基础篇精读荟萃(5)
2015年职称英语词汇记忆技巧及经验:比较记忆法
2015年职称英语卫生类考试单词趣味记忆六
2015年备考经验:职称英语考试内容
2014年职称英语考试复习必经的三个阶段
2015职称英语考试阅读理解备考经验分享
2014年职称英语考试基础篇精读荟萃(8)
2015年职称英语考试阅读判断备考攻略
2014年职称英语考试基础篇精读荟萃(15)
2014年职称英语考试基础篇精读荟萃(13)
2015年职称英语卫生类考试单词趣味记忆一
2015年备考经验:职称英语考试高频词汇记忆秘诀
2014年中石油职称英语与全国职称英语区别
2015年职称英语卫生类考试单词趣味记忆五
2015年职称英语答概括大意答题技巧
2014年职称英语考试应退出历史舞台
2014年全国职称英语考试句型宝典(9)
2014如何利用好自己的时间,轻松备考职称英语?
2014年职称英语考试特典:常见短语汇编(1)
2014年职称英语考试基础篇精读荟萃(14)
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |