Virtually everything astronomers known about objects outside the solar system is based on the detection of photons—quanta of electromagnetic radiation. Yet there is another form of radiation that permeates the universe: neutrinos. With (as its name implies) no electric charge, and negligible mass, the neutrino interacts with other particles so rarely that a neutrino can cross the entire universe, even traversing substantial aggregations of matter, without being absorbed or even deflected. Neutrinos can thus escape from regions of space where light and other kinds of electromagnetic radiation are blocked by matter. Furthermore, neutrinos carry with them information about the site and circumstances of their production: therefore, the detection of cosmic neutrinos could provide new information about a wide variety of cosmic phenomena and about the history of the universe.
But how can scientists detect a particle that interacts so infrequently with other matter? Twenty-five years passed between Pauli’s hypothesis that the neutrino existed and its actual detection: since then virtually all research with neutrinos has been with neutrinos created artificially in large particle accelerators and studied under neutrino microscopes. But a neutrino telescope, capable of detecting cosmic neutrinos, is difficult to construct. No apparatus can detect neutrinos unless it is extremely massive, because great mass is synonymous with huge numbers of nucleons (neutrons and protons), and the more massive the detector, the greater the probability of one of its nucleon’s reacting with a neutrino. In addition, the apparatus must be sufficiently shielded from the interfering effects of other particles.
Fortunately, a group of astrophysicists has proposed a means of detecting cosmic neutrinos by harnessing the mass of the ocean. Named DUMAND, for Deep Underwater Muon (muon: n. μ介子) and Neutrino Detector, the project calls for placing an array of light sensors at a depth of five kilometers under the ocean surface. The detecting medium is the seawater itself: when a neutrino interacts with a particle in an atom of seawater, the result is a cascade of electrically charged particles and a flash of light that can be detected by the sensors. The five kilometers of seawater above the sensors will shield them from the interfering effects of other high-energy particles raining down through the atmosphere.
The strongest motivation for the DUMAND project is that it will exploit an important source of information about the universe. The extension of astronomy from visible light to radio waves to x-rays and gamma rays never failed to lead to the discovery of unusual objects such as radio galaxies, quasars, and pulsars. Each of these discoveries came as a surprise. Neutrino astronomy will doubtless bring its own share of surprises.
1. Which of the following titles best summarizes the passage as a whole?
(A) At the Threshold of Neutrino Astronomy
(B) Neutrinos and the History of the Universe
(C) The Creation and Study of Neutrinos
(D) The DUMAND System and How It Works
(E) The Properties of the Neutrino
2. With which of the following statements regarding neutrino astronomy would the author be most likely to agree?
(A) Neutrino astronomy will supersede all present forms of astronomy.
(B) Neutrino astronomy will be abandoned if the DUMAND project fails.
(C) Neutrino astronomy can be expected to lead to major breakthroughs in astronomy.
(D) Neutrino astronomy will disclose phenomena that will be more surprising than past discoveries.
(E) Neutrino astronomy will always be characterized by a large time lag between hypothesis and experimental confirmation.
3. In the last paragraph, the author describes the development of astronomy in order to
(A) suggest that the potential findings of neutrino astronomy can be seen as part of a series of astronomical successes
(B) illustrate the role of surprise in scientific discovery
(C) demonstrate the effectiveness of the DUMAND apparatus in detecting neutrinos
(D) name some cosmic phenomena that neutrino astronomy will illuminate
(E) contrast the motivation of earlier astronomers with that of the astrophysicists working on the DUMAND project
4. According to the passage, one advantage that neutrinos have for studies in astronomy is that they
(A) have been detected for the last twenty-five years
(B) possess a variable electric charge
(C) are usually extremely massive
(D) carry information about their history with them
(E) are very similar to other electromagnetic particles
5. According to the passage, the primary use of the apparatus mentioned in lines 24-32 would be to
(A) increase the mass of a neutrino
(B) interpret the information neutrinos carry with them
(C) study the internal structure of a neutrino
(D) see neutrinos in distant regions of space
(E) detect the presence of cosmic neutrinos
6. The passage states that interactions between neutrinos and other matter are
(A) rare
(B) artificial
(C) undetectable
(D) unpredictable
(E) hazardous
7. The passage mentions which of the following as a reason that neutrinos are hard to detect?
(A) Their pervasiveness in the universe
(B) Their ability to escape from different regions of space
(C) Their inability to penetrate dense matter
(D) The similarity of their structure to that of nucleons
(E) The infrequency of their interaction with other matter
8. According to the passage, the interaction of a neutrino with other matter can produce
(A) particles that are neutral and massive
(B) a form of radiation that permeates the universe
(C) inaccurate information about the site and circumstances of the neutrino’s production
(D) charged particles and light
(E) a situation in which light and other forms of electromagnetic radiation are blocked
9. According to the passage, one of the methods used to establish the properties of neutrinos was
(A) detection of photons
(B) observation of the interaction of neutrinos with gamma rays
(C) observation of neutrinos that were artificially created
(D) measurement of neutrinos that interacted with particles of seawater
(E) experiments with electromagnetic radiation
参考答案:ACAD EAEDC
国际英语资讯:Iran accelerates nuclear propulsion project amid U.S. hostile policies
体坛英语资讯:Argentina, Uruguay, Paraguay step up their joint bid for World Cup 2030
韩国队内讧:速滑女将嘲讽孤立队友 57万民众请愿将其开除
兵马俑美国展出被盗走拇指!博物馆里办派对安保漏洞引争议
冥想在使你成为更好的人方面的作用有限
“海陆空”回家难 海口上演真实版“人在囧途”
国内英语资讯:Chinas top legislature prepares for upcoming annual session
国内英语资讯:1st LD-Writethru: China to prolong adjustment period of registration-based stock listing sys
2018健身新风潮:边跑步边捡塑料垃圾
国内英语资讯:Late former senior political advisor cremated
Boom and bust?
体坛英语资讯:Japans Hanyu retains figure skating title while snowboarder Ledecka takes womens super-G
国内英语资讯:China Focus: CPC Central Committee to hold third plenary session
请不要再放气球了 它其实是个杀手
国际英语资讯:Iran rejects U.S. conditions for upholding nuclear deal
体坛英语资讯:Austrias Thiem wins second Argentina Open title
中国古代皇家如何庆祝春节
密苏里州州长被控侵犯隐私被逮捕提审
英国数百家肯德基被迫关门,原因竟是没鸡了?
国内英语资讯:Shanghai sees growing consumer complaints during Spring Festival holiday
国内英语资讯:Chinas 12th NPC has 2,896 deputies
平昌冬奥会最美战袍 你最喜欢哪一套
国际英语资讯:32 Palestinians injured in clashes with Israeli soldiers in West Bank, Gaza
体坛英语资讯:Ronaldinho reveals post-retirement plans
比尔盖茨客串《生活大爆炸》,还打了谢耳朵?
国内英语资讯:China prolongs preparation period for IPO reform
体坛英语资讯:Federer wins in Rotterdam and becomes worlds number one again
国际英语资讯:U.S. imposes heaviest sanctions on DPRK amid detente on Korean Peninsula
冬奥会“破纪录”还可以怎么说?
国内英语资讯:China elects 2,980 deputies to national legislature
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |