所在位置: 查字典英语网 >留学英语 > GMAT > GMAT数学 > GMAT数学实用解题思路归纳

GMAT数学实用解题思路归纳

发布时间:2016-03-02  编辑:查字典英语网小编

  GMAT数学的解题最依赖思路分析。由于其和逻辑都属于偏理科的性质,在GMAT考试中,数学的复习就需要大量的GMAT数学真题做铺垫,整理做题思路来进行更有效果的复习。小编为大家总结出几点数学的做题思路供大家进行参照。

  1.换元思想

  换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的。

  2.数形结合思想

  数形结合的思想,其实质是将抽象的GMAT数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过形往往可以解决用数很难解决的问题。

  3.转化与化归思想

  所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题。

  转化与化归的思想方法是GMAT数学中最基本的思想方法。GMAT考试中的一切数学问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现.各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段.所以说转化与化归是数学思想方法的灵魂。转化与归化思想在GMAT数学真题中经常出现,大家需要注意一下。

  4.函数与方程思想

  函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题.方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理,实现问题与方程的互相转化接轨,达到解决问题的目的。这种思想对于解决GMAT数学中的一些难题至关重要。

  5.分类讨论思想

  所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答。实质上分类讨论是化整为零,各个击破,再积零为整的策略。分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论。

  上述五点就是小编整理的关于GMAT数学的解题思路。GMAT考试中,合理正确的解题思路是考试的一大法宝。大家在做GMAT数学真题的时候一定要对应每一道题目整理他们的做题思路,以找出其中的题目规律,这对大家的复习效率的提高有很大的帮助。

  

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 年级
  • 类别
  • 版本
  • 上下册
年级
不限
类别
英语教案
英语课件
英语试题
不限
版本
不限
上下册
上册
下册
不限