1.换元思想
换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的.
2.数形结合思想
数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过形往往可以解决用数很难解决的问题.
3.转化与化归思想
所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题.
转化与化归的思想方法是数学中最基本的思想方法.数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现.各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段.所以说转化与化归是数学思想方法的灵魂.
4.函数与方程思想
函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题.方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理,实现问题与方程的互相转化接轨,达到解决问题的目的.
5.分类讨论思想
所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答.实质上分类讨论是化整为零,各个击破,再积零为整的策略. 分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.
至此,数学五大思想全部介绍完毕,下面的附件中,有针对各种思想的举例和详细解法,希望大家都能从中有所收获。
疑问句的翻译
2017考研英语作文范文:大学生自主创业
调查:政客最不值得信任
川普对本土企业把就业转移海外再发警告
约定的时间 The Time of A Date
关于《神奇动物在哪里》的十大幕后故事
女人最爱男人什么身材?结果叫你大吃一惊!
又添4种元素!你的元素周期表又要更新了哦!
“仇外情绪”当选Dictionary.com年度词汇
雨声 The Sound of the Rain
用橙子皮可以洗餐具?用可乐居然还能…
大学英语四级作文预测:祝贺信和道歉信
陈冯富珍总干事在第九届全球健康促进大会上的主旨发言
意大利公投失败总理辞职:离脱欧不远了?!
撩妹必备的英语口语
考试前夜如何复习
大学英语四级作文范文:网购
关于母爱的英文名言
美文赏析:我的生活,充满魔法
在第九届全球健康促进大会开幕式上的致辞
特朗普:美企海外代工或面临35%惩罚性关税
5条建议教你搞定大学期末考
正反译法
心情不好没胃口?神奇应用根据表情推荐食谱
活畜生! 小伙嫌房小竟当街殴打父母!
博尔特:2017退役不再复出 我要转行踢球了!
如何回答“我为什么雇佣你?”
陈天桥夫妇捐资美国大脑研究
想做个有条理的人却无从下手?跟着这6条做!
丁克族被接受吗 Is Dink Acceptable
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |