GMAT数学辅导:算术知识点全解析
6.排列与组合
There are some useful methods for counting objects and sets of objects without actually listing the elements to be counted. The following principle of Multiplication is fundamental to these methods.
If a first object may be chosen in m ways and a second object may be chosen in n ways, then there are mn ways of choosing both objects.
As an example, suppose the objects are items on a menu. If a meal consists of one entree and one dessert and there are 5 entrees and 3 desserts on the menu, then 53 = 15 different meals can be ordered from the menu. As another example, each time a coin is flipped, there are two possible outcomes, heads and tails. If an experiment consists of 8 consecutive coin flips, the experiment has 28 possible outcomes, where each of these outcomes is a list of heads and tails in some order.
阶乘:factorial notation
假如一个大于1的整数n,计算n的阶乘被表示为n!,被定义为从1至n所有整数的乘积,
例如:4! = 4321= 24
注意:0! = 1! = 1
排列:permutations
The factorial is useful for counting the number of ways that a set of objects can be ordered. If a set of n objects is to be ordered from 1st to nth, there are n choices for the 1st object, n-1 choices for the 2nd object, n-2 choices for the 3rd object, and so on, until there is only 1 choice for the nth object. Thus, by the multiplication principle, the number of ways of ordering the n objects is
n = n!
For example, the number of ways of ordering the letters A, B, and C is 3!, or 6:ABC, ACB, BAC, BCA, CAB, and CBA.
These orderings are called the permutations of the letters A, B, and C.也可以用P 33表示.
Pkn = n!/ !
例如:1, 2, 3, 4, 5这5个数字构成不同的5位数的总数为5! = 120
全优课堂2017届高考总复习当堂过关微测:必修1 unit 5《Nelson Mandela-a modern hero》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修1 unit 2《English around the world》(新人教版含答案)
全优课堂2017届高考总复习限时规范训练:必修2 unit 3《Computers》(新人教版含解析)
全优课堂2017届高考总复习当堂过关微测:选修8 unit 4《Pygmalion》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修2 unit 1《Cultural relics》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修3 unit 3《The Million Pound Bank-Note》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:选修7 unit 3《Under the sea》(新人教版含答案)
全优课堂2017届高考总复习限时规范训练:必修1 unit 2《English around the world》(新人教版含解析)
全优课堂2017届高考总复习当堂过关微测:必修4 unit 1《Women of achievement》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修2 unit 5《Music》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:选修7 unit 1《Living well》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修3 unit 4《Astronomy:the science of the stars》(新人教版含答案)
全优课堂2017届高考总复习限时规范训练:必修1 unit 5《Nelson Mandela-a modern hero》(新人教版含解析)
全优课堂2017届高考总复习当堂过关微测:必修2 unit 3《Computers》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:选修6 unit 5《The power of nature》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修5 unit 5《First aid》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:选修6 unit 3《A healthy life》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修3 unit 5《Canada
全优课堂2017届高考总复习当堂过关微测:必修5 unit 1《Great Scientists》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修1 unit 4《Earthquakes》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修5 unit 3《Life in the future》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修3 unit 2《Healthy eating》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修1 unit 3《Travel journal》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:选修8 unit 1《A land of diversity》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修5 unit 4《Making the news》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:选修8 unit 3《Inventors and inventions》(新人教版含答案)
全优课堂2017届高考总复习限时规范训练:必修1 unit 1《Friendship》(新人教版含解析)
全优课堂2017届高考总复习当堂过关微测:必修3 unit 1《Festivals around the world》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:选修6 unit 1《Art》(新人教版含答案)
全优课堂2017届高考总复习当堂过关微测:必修1 unit 1《Friendship》(新人教版含答案)
不限 |
英语教案 |
英语课件 |
英语试题 |
不限 |
不限 |
上册 |
下册 |
不限 |