Climate and the solar cycle
气候和太阳圈
Chilling out in the winter sun
在冬日的阳光中发冷
Stratospheric changes can lead to nasty cold snaps
平流层的变化能引发讨人厌的寒流
THOSE unconvinced-and those seeking to unconvince others-of the reality of man-madeglobal warming often point to the changeable behaviour of the sun as an alternativehypothesis.
不相信全球变暖是人为因素造成的和那些企图让别人不相信的人常常会将太阳的易变表现作为假设进行选择。
A new study showing how the severity of winters in Europe, and warming in the Arctic, mightbe linked to changes in solar activity might seem to add to this case.
一项新的研究正在致力于研究欧洲的严冬和日渐变暖的北极圈与太阳的变化活动可能的关联,似乎是为了证明此观点。
In itself, it does not, for the heat in question is being redistributed, notretained.
实则不然,因为受人质疑的太阳热能一直在重新分布,而不是保持不变的。
But it does point to two other lessons about climate change: that hard data on the factorswhich affect it are sometimes difficult to come by; and that computer models of the climatecan be quite impressive tools for working out what is going on.
但这项研究却让人们从气候变化中学到了其他两点:影响因子的数据有时候很难得到;气候的电脑模型能够模拟出现在的气候状况,让人印象深刻。
The sun s activity waxes and wanes on an 11-year cycle, and over this cycle the amount ofultraviolet light the sun emits changes a lot more than does the total amount of energy.
太阳的活动周期是11年,在此周期内太阳散发出的紫外线总量的变化比太阳能总量的变化要大的多。
The stratosphere, the part of the Earth s atmosphere which does most to absorb UV, mightthus be expected to be particularly sensitive to the cycle.
吸收大部分紫外线的平流层?地球大气圈的一部分,在此周期内可能会变得异常敏感。
In a paper just published in Nature Geoscience, Sarah Ineson of Britain s Meteorological Officeand her colleagues compared the way that the Met Office s new and putatively improvedclimate model dealt with winters at times of high UV and at times of low UV, using data onthe amount of ultraviolet the sun gives off that were collected by a satellite called SORCE.
刚刚在《自然-地球科学》杂志上发表的一篇论文中,英国气象办公室的沙哈.伊内森和她的同事用该气象办公室公认的新型气候改进模型,对其在冬天纪录的高紫外线和低紫外线数据进行比较,这些数据是由一架名叫SORCE的卫星收集太阳散发的紫外线量获得的。
Dr Ineson found that at low UV levels the stratosphere in the tropics was cooler, becausethere was less UV for it to absorb, which meant the difference in temperature between thetropical stratosphere and the polar stratosphere shrank.
伊内森博士发现热带地区平流层中的紫外线含量低,因而就更凉爽,因为那里没有足够的紫外线可以吸收,也就意味着热带地区平流层的气温和极地地区平流层的气温差异很大。
That changed the way the atmosphere circulated,
这种情况改变了大气环流的方式。
and as those changes spread down into the lower atmosphere they made it easier for coldsurface air from the Arctic to come south in winter, freezing chunks of northern Europe.
冬天,当大气环流变化散布到低一点的大气中时,自北极圈表层而来的冷空气很容易就能传播到南方,让北欧的大部分国家处于冰冻之中。
These conditions looked similar to those seen in the past two cold European winters-whichoccurred at a time of low solar activity.
这些状况和过去的两次发生在欧洲的严冬很相似那两次严冬都发生在太阳活动频率很低的时候。
The Arctic itself, in models and in real life, was warmer than usual, as were parts of Canada.
而北极圈本身,无论是作为模型还是实际情况,都比平常要温暖,加拿大部分地区也是如此。
In contrast, northern Europe, swathes of Russia and bits of America were colder.
临近俄罗斯和美国的北欧则相反,显得比平时更冰冷。
Why had this solar effect not been seen before?
为什么我们之前没有看出这种日光影响呢?
To some extent it had.
某种程度上,我们看到过。
Earlier modelling of a period of prolonged low solar activity in the 17th and 18th centuriesshowed similar patterns.
更早以前,对17、18世纪时太阳活动持续不活跃的那段时期所做的模型也体现了同样的结构。
That models of today s climate had not was,
但如今的气候模型却没有体现出来。
in part, because they used much lower estimates of the amount of UV variation over thesolar cycle than those derived from the SORCE data, the most precise to be taken from asatellite looking at the sun.
部分原因是因为对太阳圈内紫外线变化量的估计比直接从SORCE中得来的要低的多。SORCE观察太阳所得出的数据,比其他的卫星更为精准。
It may just be that working with more realistic data made the model work better.
那么用更为接近实际的数据做模型或许更为可靠。
This does not mean the question is settled.
这并不意味着问题解决了。
Some scientists suspect the SORCE data may be exaggerating the sun s variability, and ifthey were revised the link might go away.
一些科学家怀疑SORCE的数据可能夸大了太阳的变化性,如果数据一经修改,两者的关联可能也不复存在了。
There are other theories around seeking to explain the recent cold winters, too.
还有其他一些理论也正寻求解释最近冷冬的原因。
Improving predictions of future cold winters on the basis of this work, as the researchers saythey would like to do, may thus prove hard.
研究员们说,他们想通过这些理论模型来改进预测未来冷冬的准确性,但看来并不那么容易。
But though global warming has made people look to models as predictors of the future, thatis not their strongest suit.
尽管全球变暖让人们将模型视为未来的预言者,这却不是模型的最大作用。
Something they can do much better is look at what happens when a variable such as UV isaltered, compare that with the data, and thus gain insight into the mechanisms by whichclimate works.
它们还有更大的作用,它们能观察当一个变量改变时会发生什么,并与数据作比较,从而洞察出气候变化的机制。
This new research provides a good example of what such an approach can achieve.
这项新的研究为这种方法所能取得的结果提供了好的例子。
上一篇: 2015考研英语阅读美貌与职场
下一篇: 2015考研英语阅读永恒的守护者