GMAT考试对于考生的思维要求是比较高的,我们拿GMAT数学来举例。数学从来都是要求大家细心细心再细心的,因为数学里有很多细节部分需要我们经常去注意。今天我们另辟蹊径谈谈逆向思维的重要性,逆向思维是用来应对数学难题的一种方法。想得到GMAT数学满分的考生应该来了解一下,下面是小编的详细介绍:
从小到大,许多问题也就是这样解决的。由于这样思考解决了许多问题,我们也就习惯于这么思考了。但是随着我们的长大,随着我们接触问题的增多,我们逐渐发现许多问题这么思考已经解决不了,可是在这个情况下,大多数人没有怀疑自己多年的惯性是否不对,或至少没有怀疑过多年的惯性是否是唯一对的,而冠以自己没有努力,没有做许多题,没有经历许多事情,而去努力做题,努力工作,又由于努力一定比不努力强,从而在他努力获得一些提高后,就会反向说服他自己只要努力就行了。
但是少数人开始思考正向思维的对立面:逆向思维。所谓逆向思维,其实一点也不神秘,也就是不再追求非要从起点到终点,而是从终点反过来思考问题,或从对立面思考问题。
例:从1,2,4,6,8,10中任取若干个数,若取出的是一个数,取的是几值就是几,若取出不只一个数,就把取出的数相加求和,如若取2,4,就2+4=6,值为6。问这样取有多少个不同的值?
许多学生拿到题后,立刻想从总数中减去重复的,但发现重复的太多,不好计算,就没有思路了。这就是典型的从条件出发,从起点出发。但不是每个问题都适合这样思考,我们来看看若采取逆向思维的优势。
我们知道,最小值是1,最大值是全取,1+2+4+6+8+10=31,而我们发现2,4,6,8,10是最小的正偶数,它们的组合可以把31之内的所有偶数都取到,而偶数加1就是奇数,所以所有31之内的奇数也可以取到,因此1到31之间所有整数都可以取到,所以答案是31!
上述的例子我想大家一定可以看到正向和逆向的区别。其实我们有许多事情都是这样的,本来不难的事情,被我们的思维的惯性的束缚,导致把事情变难了。举个简单例子,大家都知道在工作中老板是关心结果而不是关心过程,大家也都知道考试中的标准化考试是根据结果给分,而不是过程,但是在这个情况下,许多甚至大多数师生还都要求做题中追求过程的完美性。
以上就是小编对于GMAT考试数学部分逆向思维的理解,GMAT数学大部分考的都是比较基础的知识,但是不可否认的是难题也是存在的。那么逆向思维就为我们应对难题提供了一种方法,希望考生们能在以后的复习准备中多加注意,想拿到GMAT数学满分的考生就要多看看这些知识了。
上一篇: GMAT数学满分短期冲刺怎么做
下一篇: GMAT数学复习的效率如何提升
President pays visit to Hainan fishermen
Virus still not spread by people
一个小男孩的心愿 A Little Boy’s Wish
No joy for Yahoo China as e-mail service to close
McGrady back in NBA with Spurs
Poultry farmers struggle to find insurance
Customers not warm on charity coffee
Hollande's visit expected to open new chapter
Hollywood magic put to work in China
体坛英语资讯:Manchester United reach Europa League final
London Marathon won't be canceled
国际英语资讯:UAE condemns DPRK ballistic missile test
H7N9 outbreak linked to waterfowl migration
China Unicom sees profit surge
与“父亲”相关的英文习惯用语
国际英语资讯:Obama Presidential Center to bring billions income for Chicago: report
国际英语资讯:AIIB committed to providing strong support to ASEAN
Hunt continues for survivors of Bangladesh building collapse
Man jailed for pirating Mo's works
Quality concerns over bottled water